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INTRODUCTION 
Radiography or X-Ray imaging is one of the most 

frequently performed exams in medical imaging. In 2006 
alone, about 377 million diagnostic and interventional 
radiologic examinations were performed in the US, and over 
70% were radiographic studies1. Although the technology to 
conduct Radiography procedures has rapidly developed, 
basic radiographic views (image as seen by the image 
receptor) did not change much over the years.   

There are usually several vital factors to describe a 
radiographic view: the anatomy (chest, abdominal, foot, 
etc.), the laterality (left or right), the projections (Antero-
Posterior, lateral, oblique), and body position (supine, erect, 
flexion, extension, etc.). Clinically, when an X-ray order is 
prescribed, it may contain one or multiple views with clear 
instructions. For example, an order of “XR Chest 2 View 
(PA, LAT)” instructs the technologists to take two chest X-
ray views (one posterior-anterior view and one lateral view) 
for radiologists’ reading. 

Digital imaging, including computed radiography (CR) 
and digital radiography (DR), has become the Radiology 
department’s dominant equipment. X-ray images taken are 
transferred and stored electronically in the picture archiving 
and communication system (PACS) system with digital 
imaging and communications in medicine (DICOM) format. 
The DICOM header contains rich information regarding the 
patient, exam techniques, and other imaging options.        
Theoretically, it could also contain information regarding 
radiographic views, such as anatomy, laterality, and 
projections. However, such information is only available for 
specific vendors, and it depends on the technologist to select 
the proper protocol for the workstation before the exam. 

A previous study reported2 that 15% of the exams missed 
laterality information in the header. In current clinical 
practice, x-ray technologists put additional lead markers to 
mark the laterality and the body position, along with their 
name initials. These additional markers could also be added 
later from the acquisition workstation digitally. During the 

 
1 Mettler, F.A., Jr., et al., Radiologic and nuclear medicine studies in the United 
States and worldwide: frequency, radiation dose, and comparison with other 
radiation sources--1950-2007. Radiology, 2009. 253(2): p. 520-31. 
2 Filice, R.W. and S.K. Frantz, Effectiveness of Deep Learning Algorithms to 
Determine Laterality in Radiographs. J Digit Imaging, 2019. 32(4): p. 656-664. 
3 Seiden, S.C. and P. Barach, Wrong-side/wrong-site, wrong-procedure, and 
wrong-patient adverse events: Are they preventable? Arch Surg, 2006. 141(9):p. 
931-9. 
4 Russakovsky, O., et al., ImageNet Large Scale Visual Recognition Challenge. 
International Journal of Computer Vision, 2015. 115(3): p. 211-252. 

marker-adding process, it is also possible that human errors 
can happen with wrong markers, leading to the wrong side or 
wrong body part exams. Adverse events of the wrong side, 
wrong site, wrong procedure, and wrong patient in radiology 
are significant issues that must be addressed3. 

Machine learning has been successfully applied in image 
classification for natural images 4 , and researchers have 
shown great success in applying pre-trained machine 
learning models with transfer learning in radiology 5 . 
Specifically, task-specific machine learning models generate 
high accuracy and efficiency in identifying different X-ray 
views, including laterality6 and projection7 8. However, how 
well machine learning could learn to classify different X-ray 
views, in general, remains unclear. The difficulty levels for 
identifying the view difference could be low (Chest PA vs. 
Chest Lateral, Figure 1a and Figure 1b), medium (Knee 
Lateral vs. Oblique, Figure 1c and Figure 1d), or high (Foot 
regular vs. Foot Standing, Figure 1e and Figure 1e).  

 
Figure 1: Radiographic View Examples 

In this research brief, we explore the possibility of using 
popular machine learning models with transfer learning to 
identify radiographs generally. The results will indicate the 
possibility of building a quality control program based on 
machine learning models to ensure the correct image content 
of X-ray views before the patient leaves the exam room. The 
view identification and model performance are checked at 
different difficulty levels. Since this is a general view 
identification and classification task, the model prediction is 
solely based on the image contents, without training 

5 Litjens, G., et al., A survey on deep learning in medical image analysis. Med 
Image Anal, 2017. 42: p. 60-88. 
6 Filice, R.W. and S.K. Frantz, Effectiveness of Deep Learning Algorithms to 
Determine Laterality in Radiographs. J Digit Imaging, 2019. 32(4): p. 656-664. 
7 Yi, P.H., et al., Deep-Learning-Based Semantic Labeling for 2D Mammography 
and Comparison of Complexity for Machine Learning Tasks. J Digit Imaging, 
2019. 32(4): p. 565-570. 
8 Rajkomar, A., et al., High-Throughput Classification of Radiographs Using Deep 
Convolutional Neural Networks. J Digit Imaging, 2017. 30(1): p. 95-101. 
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specifically for the markers or incorporating the DICOM 
header information. 

MATERIALS AND METHODS 
IRB approval was obtained for this HIPAA-compliant 

retrospective study, and the requirement of written informed 
consent was waived. An initial database search of the EMR 
(Electronic medical records) system (Epic Systems 
Corporation, Verona, WI, USA) in our facility was 
performed, and all X-ray exams, including both CR and DR 
exams between 2013/01/01 and 2018/11/01, were included 
in the initial search. The type of each exam was identified 
based on our internal exam code. The following exclusion 
criteria were applied: X-ray exams for children (age < 18); 
exam types performed less than 200 times. 120 X-ray exam 
types were identified and included to construct the database. 
One hundred exams were randomly selected for each exam 
type, and DICOM images of the selected exams were 
extracted from our PACS using a customized Python 
application (Python Software Foundation, https://www. 
python.org/). Most exams contain more than one X-ray view. 
For instance, a hand exam may have posterior-anterior, 
lateral, and oblique views. In total, 15046 images were 
included in the curated dataset, belonging to 143 different x-
ray views. 

CLASSES AT DIFFERENT LEVELS  
Each X-ray image was manually assigned to a “class” or 

“label” at each of 4 different levels by an experienced board-
certified technologist (LH). The labeling results at different 
levels served as the ground truth to train and validate the 
proposed machine-learning approach for identifying X-ray 
views. The labeling convention was defined as given below.        
An example of this hierarchy for “ankle” is illustrated in 
Figure 2. 
• Level 1: Anatomy Level. Examples: “Abdomen,” “Chest,” 

“Foot.” In total, 25 classes or labels were assigned at this 
level.  

• Level 2: Laterality Level. For anatomies that have 
laterality, they were further labeled at this level. Examples: 
“Foot_L,” “Finger_R,” “Chest_None.” “None” was 
assigned if there was no appropriate laterality level. In 
total, 41 classes or labels were assigned at this level.  

• Level 3: Projection Level. Examples: “Foot_L_AP,” 
“Head_None_Lat,” and “Ankle_R_Lat.” Information on 
projection directions was included in this level. “None” 
was assigned if there was no appropriate laterality level. In 
total, 108 classes or labels were assigned at this level. 

 
9 Chollet, F.C.O. and others, Keras. 2015, \url{https://keras.io}.  
10 Szegedy, C., et al. Rethinking the inception architecture for computer vision. in 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. 2016. 

 
Figure 2: The Hierarchic Tree of The Classification 

(Label) of Images at Four Different Levels 
• Level 4: Detailed Level. This is the most detailed 

classification level. Examples: “Foot_L_AP_Stand,” 
“Pelvis_None_None_Inlet,” CSpine_None_AP_Ext.” 
“None” was assigned if there was no appropriate laterality 
level. In some clinical scenarios, e.g., “Foot_R_AP_Reg” 
vs. “Foot_L_AP_Stand,” the difference between variable 
views is so subtle that even experienced technologists have 
to identify them based on additional information, such as 
the markers in the image. In total, 143 classes or labels 
were assigned at this level. 

ALLOWED LABELS 
Internal ambiguity does exist for the label or class 

assignment for X-ray views. For example, “wrist” is part of 
a hand image. Therefore, labeling a “hand” image as “wrist” 
in certain situations might be acceptable. To account for this 
issue, a series of “allowed labels” were created and assigned 
for each label at different levels, and the model performance 
under “allowed labels” was also evaluated.  
DEEP LEARNING MODEL AND TRANSFER LEARNING 

For GPU acceleration, machine learning models were 
trained with a Linux-based computer with Keras deep 
learning library9 and CUDA 9.1 (Nvdia Corporation, Santa 
Clara, CA). The computer has an Intel Xeon® processor E5-
2660 processor, 16TB hard disk space, 128GB RAM, and 4 
NVIDIA GeForce GTX 1080Ti graphics processing units 
(Nvidia Corporation, Santa Clara, CA).  

Inception V3 10   was selected to perform the 
classification task in this study. Inception V3  was pre-
trained with the ImageNet database11, and such infrastructure 
has demonstrated promising image classification capacity in 
several settings. We used transfer learning to adjust the 
model parameters to fit into the radiography data. The top 
layer of the original Inception V3 was removed. A polling 
layer, a fully connected layer, a dropout layer, and a final 
activation layer with sigmoid activation were added. 
Categorical cross-entropy was used as the loss function, and 
the learning rate was set to 0.0001. The total number of 

11Russakovsky, O., et al., ImageNet Large Scale Visual Recognition Challenge. 
International Journal of Computer Vision, 2015. 115(3): p. 211-252. 
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Epochs is 40. For each level of the classification task, the 
same neural network infrastructure was trained and 
validated, yielding four separate models for four labeling 
levels.   

To construct image datasets for Inception V3, all original 
images in DICOM format were converted to PNG format. 
These images were then resized to 299 by 299 pixels, and 
pixel values were normalized to [0, 1] in the training process. 
For each class at each level, the images were randomly split 
into training sets (70%), validation sets (15%), and test sets 
(15%). Real-time data augmentation was performed by 
applying the following random image transformations: 
image rotation (-10 degrees to 10 degrees), image translation 
(60 pixels in each direction), image shearing (-10 degrees to 
10 degrees), and image zooming (0-20%) for each epoch. In 
addition, the horizontal flip was turned on only for Level 1 
classification data augmentation since the image orientation 
could be an essential feature in classifying the laterality. 

MODEL OUTPUT  
The model’s output on each image is a vector of “scores” 

corresponding to each class. The “predicted class” was the 
output class with the highest score. We also record the output 
classes with the second and third-highest scores for further 
analysis. We repeated the processing for all four levels, 
respectively. We generated a “heat map” for each prediction 
task based on a Gradient-Weighted Class Activation 
Mapping (Grad-CAM) approach to understand the essential 
features recognized by the neural network for making 
classification decisions.  

PERFORMANCE EVALUATION 
ISLVRC (ImageNet Large Scale Visual Recognition 

Challenge) classification task 12  using top-5 classification 
errors has been successfully implanted to evaluate the 
performance of classification models. In ISLVRC, the 
“error” is defined as a false negative rate, and “top-5” 
indicates a certain tolerance level of the prediction errors for 
multi-label situations. We applied a similar concept to 
evaluate the performance in this multi-label classification 
problem, only to report sensitivity (True Positive Rate or 1-
False Negative Rate), precision, and accuracy. We report 
“top-2” and “top-3” sensitivity instead of “top-5” sensitivity 
as we do not have as many classes as in ISLVRC. We also 
report “Allowed Label” sensitivity to evaluate the model 
performance when the “error” is “reasonable” (in the pre-
defined class list). 

Overall, the following metrics were reported to evaluate 
the performance of each class: 

Sensitivity = TP/(TP+FN) 

 
12 Russakovsky, O., et al., ImageNet Large Scale Visual Recognition Challenge. 
International Journal of Computer Vision, 2015. 115(3): p. 211-252. 

Precision = TP/(TP+FP) 
For each level, the overall performance is evaluated by: 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 
where: TP = True positive; FP = False positive; TN = True 
negative; FN = False negative 
       In addition, the following performance evaluation 
metrics were reported for each class: 
• Top2_Sensitivity: If the correct label is in the top two 

prediction choices of the model output, then the prediction 
is assumed correct. 

• Top3_Sensitivity: If the correct label is in the top three 
prediction choices of the model output, then the prediction 
is assumed correct. 

• AllowedLabel_Sensitivity: If the prediction is one of the 
“Allowed Labels” for that class, then the prediction is 
assumed correct. 

RESULTS 
The overall accuracy for each level, before and after 

“Allowed Labels” are counted, is shown in Figure 3.  

 
Figure 3: The Overall Accuracy and The Accuracy 

Allowing “Reasonable Errors” for All Levels 
(A 95% CI Accuracy Range Was Reported in The Error Bars in The Images) 

As expected, the overall performance of classification 
models decreases as the classification level increases. 

 
Figure 4: A Typical Level 1 Case With Correct 

Prediction 
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Figure 4 shows a representative level 1 case with the 
original image (Figure 4a) with the label “Forearm,” the 
correct prediction of “Forearm” (Figure 4b) with the highest 
score of 0.9998 and the prediction (Figure 4c) of “Tibfib” 
with the second highest score of almost 0. The successful 
level 1 classification results also corroborated with the peak 
intensity regions in the heat map overlapped on the original 
X-ray image (figure 4b).  

 
Figure 5: A Typical Level 1 Case With the Wrong 

Prediction 
Figure 5 shows another level 1 case with the original 

image (Figure 5a) labeled as “Heel.” The prediction (Figure 
5b) with the highest score of 0.9665 was incorrect, with the 
label “Ankle.” However, the prediction with the second 
highest score of 0.1594 (Figure 5c) was correct, with the 
label “Heel.” In this case, since “ankle” is in the list of 
“Allowed Labels” for “heel,” when calculating 
“AllowedLabel_Sensitivity,” the prediction is deemed as 
correct. Similarly, since the correct label “heel” is within the 
top 2 predictions, it is deemed as correct when calculating 
“Top2_Sensitivity” and “Top3_Sensitivity”.  

 
Figure 6: A Typical Level 2 Case With Correct 

Prediction 
Figure 6 shows a level 2 case with the original image 

(Figure 6a) labeled “Elbow_R.” The prediction was correctly 
made with the highest score of 0.9991 (Figure 6b). Note that 
the generated heat map (peak intensity region, Figure 6b) 
correctly pointed to the laterality-related anatomy, indicating 
that the model’s correct judgment (Right Elbow) was based 
on the anatomical features instead of the marker placed by 
the technologist. 

DISCUSSIONS 
Deep learning has been proven to perform image 

classification tasks at a comparable performance level with 
human beings. In the ImageNet challenge, where natural 
pictures are used for classification, the error rate is around 

 
13 Russakovsky, O., et al., ImageNet Large Scale Visual Recognition Challenge. 
International Journal of Computer Vision, 2015. 115(3): p. 211-252. 

6%13. Without other benchmarks, we would expect a similar 
performance of classification models in radiography view 
identification.  

In this paper, we investigated the performance of a state-
of-the-art machine-learning model in performing 
classification tasks of X-ray images. The performance was 
evaluated at different levels, from simple anatomic to subtle, 
challenging views. We found that the overall classification 
accuracy decreases with the levels ranging from 0.9562 in 
level 1 to 0.875 in level 4.  

Some data variations inside each class affect the model 
performance. Some variations come from natural anatomic 
differences, such as height, weight, sex, and age. Some 
variations come from the physiological changes due to the 
symptoms, such as broken bones, pulmonary edema in the 
chest, or implants in the pelvis. Some other variations come 
from the definition of the view itself. For example, 
“Finger_L_Obl_None” contains images for all different 
fingers. It will always be beneficial to have a larger dataset 
to improve the generality of the model performance and 
detect subtle differences between similar classes.  

The ambiguity of the X-ray image, or the multi-label 
issue, obviously affects the classification accuracy. As 
shown in Figure 5, the “heel” image was classified as 
“ankle.” Since “ankle” is part of the image, it is a “reasonable 
error.” Therefore, we introduced the concept of “allowed 
labels” to further investigate the impact of the complexity of 
X-ray images that multi-anatomical structures may be 
present. If such “reasonable errors” were allowed, the overall 
accuracy was improved to 0.9893 in Level 1, 0.9652 in Level 
2, 0.9360 in Level 3, and 0.8987 in Level 4, as shown in 
Figure 3. An alternative approach to inspect labeling errors 
is to examine if the correct label is among the top predictions, 
even if it is not the first choice. We get a “top3_Sensitivity” 
rate ranging from 0.9953 in Level 1 to 0.9695 in Level 4, 
indicating that although the model’s first prediction is wrong 
in some scenarios, the chances of finding the correct label in 
the first three predictions are still considerably high. Please 
note that the top choice may be wrong (not “reasonable 
error”).  

There are some limitations in this study. Although we 
tried to construct comprehensive X-ray image datasets, we 
could not include much data for practical reasons. We did not 
include X-ray images from children (age < 18) due to 
limitations from IRB protocol. Some unpopular X-ray views 
were not included in this study due to the limited number of 
data points or clinical practice choices. For example, many 
X-ray views specific to orthopedic surgeons are not included. 
The classification task could be done differently for this 
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hierarchy classification problem. We train one general model 
for each level to identify all the views. The downside of this 
method is that the error may come from different levels. For 
example, an “Elbow Left AP” image may be wrongly 
identified as an “Elbow Right AP” view in the Level 3 task. 
Although we try to classify the image at Level 3, a lower-
level error may be carried over. An alternative solution 
would be “cascade” classification, or to train different 
models at different levels for specific tasks; for example, 
after we get the Level 1 classification to know it is a Knee 
image, we train specific models to different “Knee Left” or 
“Knee Right” in Level 2. We expect the performance would 
improve since the number of classes reduced significantly for 
each classification task. However, the number of models 
needed for classification will be increased significantly, and 
the task has to be specified individually in this situation.  

It is important to have an effective quality control 
program in medical imaging. In the current clinical setting, 
technologists manually assess image quality before the 
exams are sent to the PACS system. Diagnostic 
radiography’s most common medical error is caused by 
incorrect patient position, exam type, or laterality. Although 
manual check works well in many settings, such a process is 
prone to errors due to variable viewing conditions and 
depends on personal experience. If any X-ray is 
inappropriately performed without post-identification of 
errors, patients will suffer severe consequences, such as 
misdiagnosis or inaccurate evaluation of treatment 14. We 
believe machine learning techniques could be applied to 
mitigate these medical errors to enable automatic “per exam” 
quality control. Our results demonstrated that the emerging 
machine learning approach could automatically check the 
image contents (X-ray view) purely on the anatomical 
information. The detection results can be subsequently 
validated with the reference information from EMR orders to 
ensure the completion and accuracy of X-ray exams.  

Based on the results of this paper, we believe that a 
clinical quality control system is feasible, which will reliably 
identify the anatomy, the laterality, and even the projection 
of the X-ray views. The model performance could be 
significantly improved if combined with other information. 
For example, when the marker information is included in 
detecting the laterality15, the accuracy is improved to 99%, 
assuming the marker information is correct. Other 
information, such as the order information from EMR and 
DICOM header information from PACS, could also be used 
to help improve or cross-validate the results from the model. 

 
14 Seiden, S.C. and P. Barach, Wrong-side/wrong-site, wrong-procedure, and 
wrong-patient adverse events: Are they preventable? Arch Surg, 2006. 141(9): p. 
931-9. 
15 Filice, R.W. and S.K. Frantz, Effectiveness of Deep Learning Algorithms to 
Determine Laterality in Radiographs. J Digit Imaging, 2019. 32(4): p. 656-664. 

More specific tasks will improve the model performance as 
well. For example, it was reported16 to have 100% accuracy 
if the machine learning algorithms are only trained to 
differentiate two views (Chest PA or Lateral) or AUC = 1 in 
differentiating CC vs. MLO view (Mammo views) 17. 

If possible, the next step of this project will be to include 
more data in the datasets, especially images from other 
institutions. We will also expect a platform that could 
provide near real-time (a few minutes after PACS upload) 
feedback to the technologists to reduce the possible wrong 
side, wrong exam errors in Radiology. 

CONCLUSIONS 
Machine learning methods were developed and applied 

to classify the X-ray images at Level 1 (Anatomy Level), 
Level 2 (Laterality Level), Level 3 (Projection Level), and 
Level 4 (Detailed Level) individually on a comprehensive X-
ray image dataset consisting of 15046 different images. 
Model performance was reported for strict definition and 
allowing “reasonable errors.” Reasonable performance is 
observed when “reasonable errors” are allowed, indicating 
the possibility of building a machine learning-based X-ray 
quality control system.  

16 Yi, P.H., et al., Deep-Learning-Based Semantic Labeling for 2D Mammography 
and Comparison of Complexity for Machine Learning Tasks. J Digit Imaging, 
2019. 32(4): p. 565-570. 
17 Filice, R.W. and S.K. Frantz, Effectiveness of Deep Learning Algorithms to 
Determine Laterality in Radiographs. J Digit Imaging, 2019. 32(4): p. 656-664. 
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