Using Weather-Based Forecasts to Estimate Commodity Demand

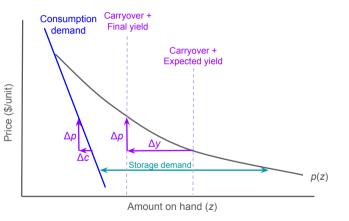
Michael J. Roberts & Sisi Zhang

University of Hawai'i at Mānoa

August 12, 2024

Introduction

Design


Results

Commodity Pricing Fundamentals

Commodity Pricing Theory

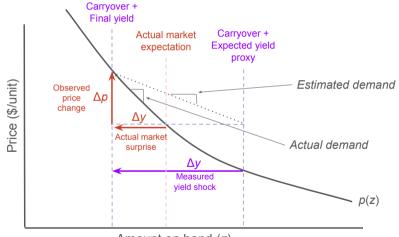
Commodity prices depend on **Amount on hand:**

- Stock carried over
- Expectations
- Current production surprise. Mainly weather driven

The Identification Problem

Many shocks besides weather

- Planting adjustments
- Technical change
- Demand changes
- Interest rates, exchange rates, policy
- Input prices (e.g., water, fertilizer)


Some shocks affect demand not supply. Some shocks anticipated by markets.

The Identification Problem

Identifying demand requires exogenous and unanticipated shifts in supply

The Identification Problem

Identifying demand requires exogenous and unanticipated shifts in supply

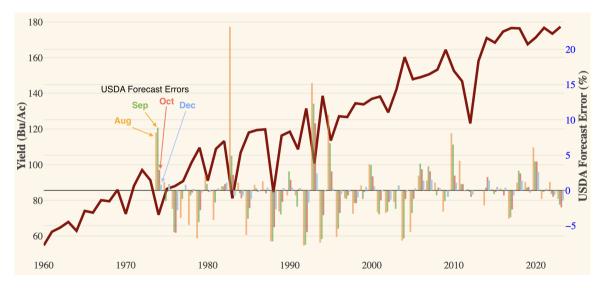
Amount on hand (z)

Disentangling Price Responses

Two measures of exogenous supply shocks in the existing literature used to identify demand:

Disentangling Price Responses

Two measures of exogenous supply shocks in the existing literature used to identify demand:


1 Yield-deviations from trend (Roberts & Schlenker, AER 2013)

Disentangling Price Responses

Two measures of exogenous supply shocks in the existing literature used to identify demand:

- 1 Yield-deviations from trend (Roberts & Schlenker, AER 2013)
- 2 USDA yield forecast updates (Adjemian & Smith, AJAE 2012)

Corn Yields and USDA Forecast Errors

- Deviation from trend.

- Deviation from trend.

It *looks* exogenous. No apparent autocorrelation, even at local levels. Extent of spatial correlation of yields roughly matches spatial correlation of weather. But there are many shocks besides weather—*other factors* drive the trend.

- Deviation from trend.

It *looks* exogenous. No apparent autocorrelation, even at local levels. Extent of spatial correlation of yields roughly matches spatial correlation of weather. But there are many shocks besides weather—*other factors* drive the trend.

- USDA Forecast Errors.

- Deviation from trend.

It *looks* exogenous. No apparent autocorrelation, even at local levels. Extent of spatial correlation of yields roughly matches spatial correlation of weather. But there are many shocks besides weather—*other factors* drive the trend.

- USDA Forecast Errors.

Private market forecasts precede USDA forecasts. Remote sensing data. Weather. Some evidence of forecast smoothing (Goyal & Adjemian, 2023).

- Weather?

- Deviation from trend.

It *looks* exogenous. No apparent autocorrelation, even at local levels. Extent of spatial correlation of yields roughly matches spatial correlation of weather. But there are many shocks besides weather—*other factors* drive the trend.

- USDA Forecast Errors.

Private market forecasts precede USDA forecasts. Remote sensing data. Weather. Some evidence of forecast smoothing (Goyal & Adjemian, 2023).

- Weather?

Used previously in Roberts & Schlenker, but weak instrument. It is difficult to predict crop yields with weather, outside the U.S.

Introduction

Design

Results

Study Design

A Weather-Based Forecast

Two weather-based instruments for the yield surprises

1 Full weather-based forecast

A Weather-Based Forecast

Two weather-based instruments for the yield surprises

1 Full weather-based forecast

- Link crop yields to weather. Schlenker & Roberts (PNAS 2009) and various extensions and elaborations (proprietary)
- Forecast season weather from season-to-date weather (proprietary)
- Find the forecast difference: 6/15 8/30

2 Key weather variable

A Weather-Based Forecast

Two weather-based instruments for the yield surprises

1 Full weather-based forecast

- Link crop yields to weather. Schlenker & Roberts (PNAS 2009) and various extensions and elaborations (proprietary)
- Forecast season weather from season-to-date weather (proprietary)
- Find the forecast difference: 6/15 8/30

2 Key weather variable

- Degree days above 29C (replicable)
- Daily PRISM grids, crop-area weighted (USDA Cropland Data Layer).
- Sum from 6/15 8/30 each year
- Key ingredient to forecasts.

$$\Delta p_t = \log(F_{9/15/t}) - \log(F_{6/1/t})$$
(1)

$$\Delta p_t = \log(F_{9/15/t}) - \log(F_{6/1/t})$$
(1)

$$\Delta y_t^{\mathsf{Dev}} = \frac{Y_t - \mathsf{trend}}{\mathsf{trend}}$$

(2)

$$\Delta p_t = \log(F_{9/15/t}) - \log(F_{6/1/t})$$
(1)

$$\Delta y_t^{\text{Dev}} = \frac{Y_t - \text{trend}}{\text{trend}}$$
(2)
$$\Delta y_t^{\text{USDA}} = \frac{Y_t^{\text{USDA}_{\text{Sept}}} - \text{trend}}{\text{trend}}$$
(3)

$$\Delta p_t = \log(F_{9/15/t}) - \log(F_{6/1/t})$$
(1)

$$\Delta y_t^{\text{Dev}} = \frac{Y_t - \text{trend}}{\text{trend}}$$
(2)
$$\Delta y_t^{\text{USDA}} = \frac{Y_t^{\text{USDA}_{\text{Sept}}} - \text{trend}}{\text{trend}}$$
(3)
$$\Delta y_t^{\text{W}} = \frac{Y_t^{\text{Weather 8/30/t}} - Y_t^{\text{Weather 6/15/t}}}{\text{trend}}$$
(4)

$$\Delta p_t = \log(F_{9/15/t}) - \log(F_{6/1/t})$$
(1)

$$\Delta y_t^{\text{Dev}} = \frac{Y_t - \text{trend}}{\text{trend}}$$
(2)
$$\Delta y_t^{\text{USDA}} = \frac{Y_t^{USDA_{\text{Sept}}} - \text{trend}}{\text{trend}}$$
(3)
$$\Delta y_t^{\text{W}} = \frac{Y_t^{\text{Weather 8/30/t}} - Y_t^{\text{Weather 6/15/t}}}{\text{trend}}$$
(4)
$$\Delta s_t = \frac{(s_{t+1}^{\text{March 1}} - s_t^{\text{June 1}})}{\text{trend production}}$$
(5)

Main Specifications

$\Delta \boldsymbol{p}_t = \beta_0 + \beta_1 \Delta \boldsymbol{y}_t + \beta_2 \boldsymbol{s}_t + \beta_3 \boldsymbol{s}_t \Delta \boldsymbol{y}_t + \varepsilon_t$

(6)

Main Specifications

$$\Delta \mathbf{s}_{t} = \gamma_{0} + \gamma_{1} \Delta \mathbf{y}_{t} + \gamma_{2} \mathbf{s}_{t} + \gamma_{3} \mathbf{s}_{t} \Delta \mathbf{y}_{t} + \varepsilon_{t}^{s}.$$
(3)
$$\Delta \mathbf{s}_{t} = \gamma_{0} + \gamma_{1} \Delta \mathbf{y}_{t} + \gamma_{2} \mathbf{s}_{t} + \gamma_{3} \mathbf{s}_{t} \Delta \mathbf{y}_{t} + \varepsilon_{t}^{s}.$$
(7)

We consider alternative measures for Δy and also IV estimates where Δy is instrumented with weather.

 $\Delta \mathbf{p}_{i} - \beta_{0} \pm \beta_{i} \Delta \mathbf{v}_{i} \pm \beta_{0} \mathbf{s}_{i} \pm \beta_{0} \mathbf{s}_{i} \Delta \mathbf{v}_{i} \pm \mathbf{s}_{i}$

(A)

Introduction

Design

Results

Results

Main Results: Coefficient Estimates

	Dependent variable: Δp_t						
-	OLS			IV	IV		
	(1)	(2)	(3)	(4)	(5)		
Yield Dev	-2.34***			-3.24***			
	(0.44)			(0.51)			
Yield USDA		-2.89***			-4.41***		
		(0.54)			(1.15)		
Yield FC			-3.92***				
			(0.68)				
Stock Ratio	0.15	0.20*	-0.073	0.17	0.30**		
	(0.12)	(0.11)	(0.14)	(0.13)	(0.15)		
Yield Dev*Stock	2.35***			3.45 ^{***}	× /		
	(0.72)			(0.87)			
Yield USDA*Stock	· /	2.86***			5.20***		
		(0.83)			(1.81)		
Yield FC*Stock			4.06***		()		
			(1.06)				
Constant	-0.10**	-0.14***	-0.059	-0.103**	-0.19***		
	(0.047)	(0.051)	(0.055)	(0.047)	(0.061)		
Observations	53	50	53	53	50		
R ²	0.46	0.51	0.45	0.41	0.45		
Adjusted R ²	0.42	0.48	0.42	0.37	0.41		

Main Results: Inverse Elasticities

	Implied Inverse Elasticities					
		OLS		IV		
	Yld-Dev USDA-FC W-FC			Yld-Dev	USDA-FC	
	(1)	(2)	(3)	(4)	(5)	
Mean s.r. (0.375)	-1.46	-1.82	-2.39	-1.95	-2.46	
	(0.25)	(0.25)	(0.33)	(0.24)	(0.49)	
Stock ratio = 0.2	-1.88	-2.32	-3.10	-2.55	-3.37	
Stock ratio = 0.5	-1.17	-1.46	-1.89	-1.52	-1.81	
Stock ratio = 0.7	-0.70	-0.89	-1.08	-0.83	-0.77	

0 -1 Inverse Elasticity -2 Yield Dev Yield USDA -3 Yield FC -4 density 0.2 0.4 0.6 0.8

. . . .

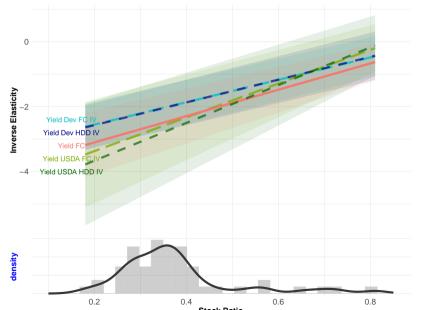
Inverse Price Elasticity Estimates

Results: Alternative Weather Instrument

-		Depe	ndent variable: 🛽	Δp_t				
	OLS		IV					
Instrument:		Yield	FC	HDD				
	(1)	(2)	(3)	(4)	(5)			
Yield Dev		-3.24***		-3.27***				
		(0.51)		(0.48)				
Yield USDA		× /	-4.41 ***	· · · ·	-4.83***			
			(1.15)		(1.34)			
Yield FC	-3.92***				· · · ·			
	(0.68)							
Stock Ratio	-0.073	0.17	0.30**	0.17	0.33**			
	(0.14)	(0.13)	(0.15)	(0.13)	(0.16)			
Yield Dev*Stock		` 3.45 ^{***}	~ /	3.50 ^{***}	· /			
		(0.87)		(0.90)				
Yield USDA*Stock		· · /	5.20***	· · /	5.82***			
			(1.81)		(2.16)			
Yield FC*Stock	4.06***		× /		· · · ·			
	(1.06)							
Constant	-0.059	-0.10**	-0.19***	-0.10**	-0.20***			
	(0.055)	(0.047)	(0.061)	(0.05)	(0.06)			
Observations	53	53	50	53	50			
R ²	0.45	0.41	0.45	0.40	0.40			
Adjusted R ²	0.42	0.37	0.41	0.37	0.36			

All Weather-Based Elasticities

		Implied Inverse Elasticities					
	OLS	DLS IV					
		Yld-FC HDD					
	W-FC	Yld-Dev	USDA-FC	Yld-Dev	USDA-FC		
	(1)	.) (2) (3)		(4) (5)	(5)		
Mean s.r. (0.375)	-2.39	-1.95	-2.46	-1.96	-2.65		
	(0.33)	(0.24)	(0.49)	(0.24)	(0.56)		
Stock ratio = 0.2	-3.10	-2.55	-3.37	-2.57	-3.67		
Stock ratio = 0.5	-1.89	-1.52	-1.81	-1.52	-1.92		
Stock ratio = 0.7	-1.08	-0.83	-0.77	-0.82	-0.76		


All Weather-Based Elasticities

	Implied Inverse Elasticities					
	OLS	S IV				
		Yld-FC HDD				
	W-FC	Yld-Dev USDA-FC Yld-Dev			USDA-FC	
	(1)	(2)	(3)	(4)	(5)	
Mean s.r. (0.375)	-2.39	-1.95	-2.46	-1.96	-2.65	
	(0.33)	(0.24)	(0.49)	(0.24)	(0.56)	
Stock ratio = 0.2	-3.10	-2.55	-3.37	-2.57	-3.67	
Stock ratio = 0.5	-1.89	-1.52	-1.81	-1.52	-1.92	
Stock ratio = 0.7	-1.08	-0.83	-0.77	-0.82	-0.76	

All Weather-Based Elasticities

	Implied Inverse Elasticities					
	OLS	OLS IV				
		Yld-FC HDD				
	W-FC	Yld-Dev	d-Dev USDA-FC Yld-Dev USDA-			
	(1)	(2)	(3)	(4)	(5)	
Mean s.r. (0.375)	-2.39	-1.95	-2.46	-1.96	-2.65	
	(0.33)	(0.24)	(0.49)	(0.24)	(0.56)	
Stock ratio = 0.2	-3.10	-2.55	-3.37	-2.57	-3.67	
Stock ratio = 0.5	-1.89	-1.52	-1.81	-1.52	-1.92	
Stock ratio = 0.7	-1.08	-0.83	-0.77	-0.82	-0.76	

Alternative Weather-Based Estimates

22/28

Storage Response to Yield Surprises

	Implied responses to yield surprises						
		OLS	IV				
	Yld-Dev	USDA-FC	Yld-Dev	USDA-FC			
	(1)	(2)	(3)	(4)	(5)		
Mean s.r. (0.375)	0.82	0.79	0.98	0.82	0.98		
	(0.11)	(0.15)	(0.24)	(0.15)	(0.29)		
Stock ratio = 0.2	0.60	0.60	0.87	0.68	0.97		
Stock ratio = 0.5	0.98	0.93	1.05	0.93	0.99		
Stock ratio = 0.7	1.24	1.15	1.17	1.09	1.00		

Export Response to Yield Surprises

	Implied responses to yield surprises					
		OLS		IV		
	Yld-Dev	USDA-FC	Yld-Dev	USDA-FC		
	(1)	(2)	(3)	(4)	(5)	
Mean s.r. (0.375)	0.003	0.0001	0.01	0.01	0.01	
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	
Stock ratio = 0.2	0.01	0.01	0.03	0.03	0.03	
Stock ratio = 0.5	-0.003	-0.005	0.0004	-0.003	-0.002	
Stock ratio = 0.7	-0.01	-0.01	-0.02	-0.02	-0.02	

Because \approx 82-98% of demand response is explained by storage adjustments, consumption demand is between $\frac{1}{5}$ and $\frac{1}{100}$ the aggregate demand elasticity, or about 0.087 to \leq 0.005

Because \approx 82-98% of demand response is explained by storage adjustments, consumption demand is between $\frac{1}{5}$ and $\frac{1}{100}$ the aggregate demand elasticity, or about 0.087 to \leq 0.005 More

inelastic at lower inventory levels

Introduction

Design

Results

- Weather can be a useful instrument for identifying commodity pricing fundamentals.
- More compelling instruments indicate more inelastic demand.
- Demand response is mostly comprised of storage adjustments, indicating very inelastic consumption demand.
- Permanent shifts in supply from policy or climate change could have substantial long-run price implications.
- Broader application requires strong links between weather and crop outcomes, which is challenging.
- Potential applications to energy systems, too.