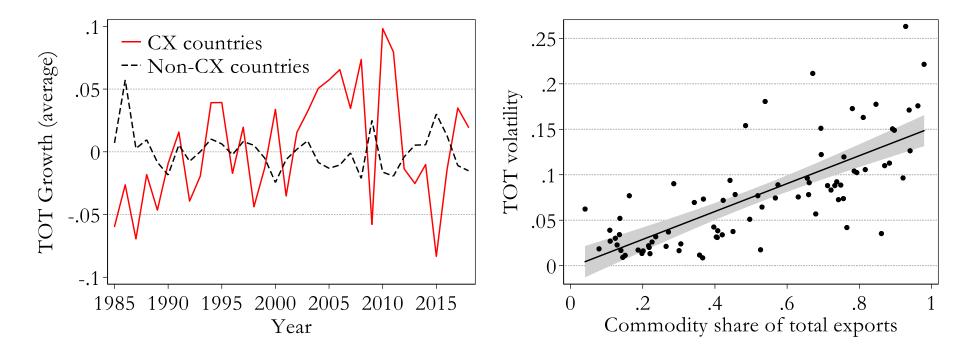
Commodity Terms of Trade Volatility and Industry Growth


Dongwon Lee

UC Riverside

The 5th JPMCC International Symposium August 16, 2022

Motivating Fact I

TOT (= p^x/p^m) more volatile in commodity-dependent countries
 Earlier evidence: Jacks, O'Rourke, Williamson (2011 *REStat*)

Note: 80 countries, 1985–2018. Source: OECD & WB's WDI.

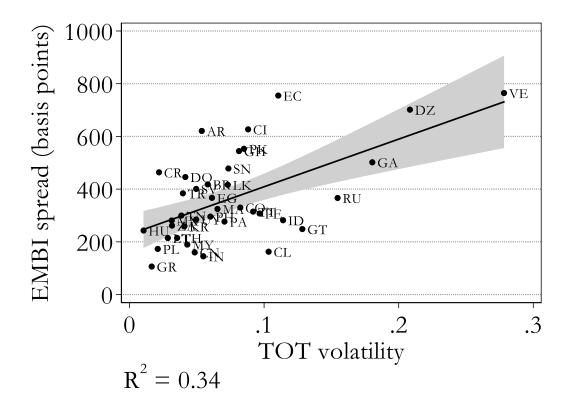
Motivating Fact II

• TOT volatility $\uparrow \Rightarrow$ Uncertainty on dollar export revenue \uparrow

 \Rightarrow Sovereign yield spread \uparrow

• For a risk-neutral lender:

$$(1+i^*) = \underbrace{(1-\pi) \times [1+(i^*+z)]}_{\text{E[return|no default]}} + \underbrace{\pi \times (0)}_{\text{E[return|default]}}$$


where i^* is a risk-free rate and π is the probability of default with $\partial \pi / \partial \sigma^{\Delta TOT} > 0$.

Solving for the risk premium *z*:

$$z = \frac{\pi}{(1-\pi)} (1+i^*)$$

Thus,
$$\frac{\partial z}{\partial \sigma^{\Delta TOT}} > 0 \Rightarrow A \text{ cost of capital increases with TOT volatility.}$$

• Empirical evidence:

Note: 39 countries, 1997–2018. Source: OECD, WB's WDI & GEM.

Research Questions

- Does volatile CTOT play a central role in depressing the growth of non-commodity sectors in commodity-rich economies?
- If so, what are the channels through which the volatility affects industry growth?

My Approach

- The role of credit constraints in transmitting CTOT uncertainty
 - Two credit constraint indicators:
 - ✓ External finance dependence (*EFD*): long-term fixed investment
 - ✓ Liquidity needs (LIQ): short-term working capital
- Industry-level data
 - Adopt the identification strategy developed by Samaniego and Sun (2015 EER) in the spirit of Rajan and Zingales (1998 AER)
 - Causality from CTOT volatility into sectoral growth
- Growth accounting: operating channels of CTOT volatility effect

Main Findings

- CTOT volatility decreases the growth of manufacturing sectors more prone to financial vulnerabilities.
 - Such effect significant only in commodity-exporting countries
 - $\circ~$ Mainly through the volatility of p^x rather than p^m
 - 0 Remarkably robust
 - \checkmark Controlling for the CTOT growth
 - ✓ Alternative CTOT and credit constraints
 - ✓ Excluding small manufacturing countries
- Firms w/ *EFD* suffer from $g_A \downarrow$ and firms w/ *LIQ* from $g_K \downarrow$.
- Offers a complementary explanation for the 'resource curse' through the credit constraint channel

Related Literature

- Resource curse
 - O Seminal work: Sachs & Warner (1995 NBER, 1999 JDE, 2001 EER)
 - Proposed justifications:
 - ✓ Dutch disease: Corden & Neary (1982 EJ), van der Ploeg & Venables (2013 JDE)
 - ✓ Reduced human capital: Gylfason, Herbertsson, Zoega (1999 MD)
 - ✓ Rent-seeking: Tornell & Lane (1999 AER), Torvik (2002 JDE)
 - ✓ Bad institutions: Mehlum, Moene, Torvik (2006 EJ)
 - ✓ Volatility of unanticipated growth: van der Ploeg and Poelhekke (2009 *OEP*)
 - ✓ CTOT volatility: Cavalcanti, Mohaddes, Raissi (2015 JAE)
 - \Rightarrow C1: Financial constraints as a channel transmitting CTOT volatility
 - \Rightarrow C2: Micro approach \rightarrow causal link & underlying mechanisms

- Macro impacts of interaction b/w uncertainty and financial frictions
 - O Theory: Alfaro, Bloom, Lin (2018 NBER), Arellano, Bai, Kehoe (2019 JPE)
 - O Empirics: Levchenko, Rancière, Thoenig (2009 JDE), Caldara, Fuentes-Albero,
 Gilchrist, Zakrajšek (2016 EER), Choi, Furceri, Huang, Loungani (2018 JIMF)
 - \Rightarrow C3: Transmission of uncertainty from a commodity into manufacturing
- Commodity prices and sovereign default risk
 - O Hilscher & Nosbusch (2010 RF), Arezki & Brückner (2011 WBER), Boehm, Eichler, Giessler (2021 JIMF)
 - \Rightarrow C4: Real consequences of commodity-sovereign risk dependence

Data and Sources

- United Nations Industrial Development Organization (UNIDO)
 - 0 Sample period: 1969–2018
 - \circ 51 countries (commodity share of exports > 50%), 22 manufacturing sectors
 - 0 Output, value-added, gross fixed capital formation, employment, etc.
 - 0 Deflate nominal dollar values using price levels from PWT
- *CTOT* (Gruss and Kebhaj, 2019)
- EFD = (capital expenditures internal funds)/capital expenditures
 - O Rajan and Zingales (1998), Choi et al. (2022)
- LIQ = inventories/sales
 - 0 Raddatz (2006)

Identification Strategy

$$\Delta y_{ci,t} = \alpha_1 \left(\sigma_{ct}^{\Delta CTOT} \times EFD_i \right) + \alpha_2 s_{ci,0} + \delta_{ct} + \delta_{it} + \delta_{ci} + \varepsilon_{ci,t}$$
$$\Delta y_{ci,t} = \beta_1 \left(\sigma_{ct}^{\Delta CTOT} \times LIQ_i \right) + \beta_2 s_{ci,0} + \delta_{ct} + \delta_{it} + \delta_{ci} + \varepsilon_{ci,t}$$

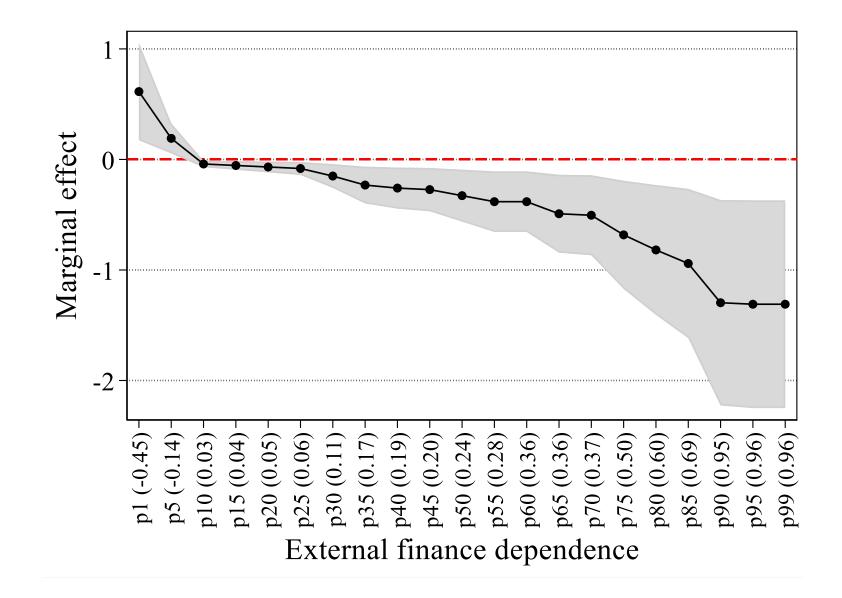
- $y_{ci,t}$ is the log of the value added in country c, industry i, and time t• $s_{ci,0}$ is the initial industry share
- $\delta_{ct}, \delta_{it}, \delta_{ci} \Rightarrow$ omitted variable bias↓ and simultaneity↓
- \circ Identification comes from *t* variation within each *c* and *i*
- Non-overlapping five-year averages \Rightarrow 10 periods for each *c*
- My hypothesis: $\alpha_1 < 0$ and $\beta_1 < 0$

Economic Significance

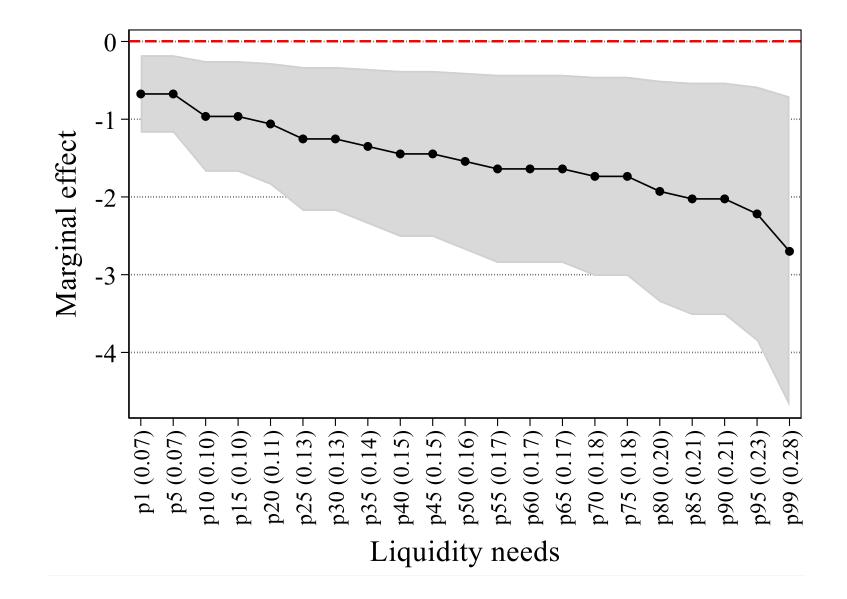
• Given a one-S.D. increase in $\sigma^{\Delta CTOT}$, growth differentials b/w relatively more and less financially-constrained industries are:

$$\hat{\alpha}_1 \times \text{S.D.}(\sigma^{\Delta CTOT}) \times (EFD_{75\text{th}} - EFD_{25\text{th}})$$

$$\hat{\beta}_1 \times \text{S.D.}(\sigma^{\Delta CTOT}) \times (LIQ_{75\text{th}} - LIQ_{25\text{th}})$$


	75 th percentile	25 th percentile
EFD	Chemical products	Non-metallic mineral products
LIQ	Vehicles and transport equipment	Paper products

Main Results


	Dependent variable: VA growth								
	Full sample		Commodity exporters		Fuel exporters		Non-commodity exporters		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
α_1	-1.17**		-1.37***		-1.15		0.71		
	(0.47)		(0.50)		(0.85)		(1.19)		
eta_1		-8.77***		-9.64***		-11.02*		4.33	
		(3.18)		(3.63)		(5.96)		(6.01)	
α_2 or β_2	-0.12***	-0.12***	-0.09*	-0.09*	-0.03	-0.02	-0.19***	-0.18***	
	(0.04)	(0.04)	(0.05)	(0.05)	(0.08)	(0.08)	(0.06)	(0.06)	
N. countries	100	100	51	51	14	14	49	49	
Obs.	13,809	13,809	6,729	6,729	1,821	1,821	7,077	7,077	
\mathbb{R}^2	0.46	0.46	0.45	0.45	0.53	0.53	0.50	0.50	
ave. g (%)	2.79		3.04		4.45		2.56		
g diff. (ppt)	-1.08	-0.92	-1.68	-1.35	-2.03	-2.20	-0.36	-0.43	

Note: SEs are clustered at the country-sector level.

Marginal Effects of Volatility as a Function of EFD

Marginal Effects of Volatility as a Function of LIQ

Numerator vs. Denominator of CTOT

	Ι	Dependent variable: VA growth						
	X =	p ^{cx}	X =	p ^{cm}				
	(1)	(2)	(3)	(4)				
X volatility \times EFD	-1.21***		0.23					
	(0.47)		(1.40)					
X volatility \times LIQ		-7.61**		-0.25				
		(3.27)		(8.16)				
Initial industry share	-0.09*	-0.09*	-0.09*	-0.09*				
	(0.05)	(0.05)	(0.05)	(0.05)				
Obs.	6,729	6,729	6,729	6,729				
\mathbb{R}^2	0.45	0.45	0.45	0.45				
g diff. (ppt)	-1.28	-0.91	0.12	-0.02				

When Controlling for the CTOT Growth

	Dependent variable: VA growth							
Filtering techniques:	HP filter				Hamilton (2018) filter			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
CTOT volatility \times EFD	-0.02**		-0.02**		-0.01*		-0.01*	
	(0.01)		(0.01)		(0.004)		(0.01)	
CTOT volatility \times LIQ		-0.14***		-0.14***		-0.05*		-0.07**
		(0.05)		(0.05)		(0.03)		(0.03)
CTOT growth \times EFD			0.30				-0.15	
			(0.55)				(0.50)	
CTOT growth \times LIQ				-0.66				-4.56
				(3.23)				(3.18)
Initial industry share	-0.09*	-0.09*	-0.09*	-0.09*	-0.09*	-0.09*	-0.09*	-0.09*
	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)
Obs.	6,729	6,729	6,729	6,729	6,729	6,729	6,729	6,729
\mathbb{R}^2	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
g diff. (ppt)	-1.04	-0.95	-0.96	-0.96	-0.71	-0.61	-0.82	-0.77

Operating Channels

• Growth accounting based on a Cobb-Douglas production function

$$\circ g_{\rm Y} = g_{\rm A} + \alpha g_{\rm L} + (1 - \alpha) g_{\rm K}$$

•
$$A_{ci,t} = Y_{ci,t} / (L_{ci,t})^{\alpha} (K_{ci,t})^{1-\alpha}$$
 with $\alpha = 0.7$

•
$$K_{ci,t} = (1 - \delta)K_{ci,t-1} + I_{ci,t}$$
 with $\delta = 0.08$

• Assume a steady state in the initial period so that $K_{ci,0} = I_{ci,0}/\delta$.

• Regression model:

 $\Delta X_{ci,t} = \gamma_1 \left(\sigma_{ct}^{\Delta CTOT} \times FIN_i \right) + \gamma_2 s_{ci,0} + \delta_{ct} + \delta_{it} + \delta_{ci} + e_{ci,t}$ where $X \in \{L, K, TFP, PROD, I\}$ and $FIN \in \{EFD, LIQ\}$

Growth Accounting in Industries with EFD

Dependent variable is the growth rate of:	L	K	TFP	PROD	Ι
	(1)	(2)	(3)	(4)	(5)
CTOT volatility \times EFD	-1.43***	0.60	-1.69***	-0.82*	-1.01
	(0.55)	(0.84)	(0.65)	(0.49)	(1.22)
Initial industry share	-0.03	0.13	-0.37***	-0.24***	-0.23
	(0.04)	(0.11)	(0.09)	(0.06)	(0.17)
Obs.	6,117	4,057	4,014	6,117	4,057
\mathbb{R}^2	0.42	0.34	0.43	0.38	0.41
Ave. g (%)	1.70	3.48	0.75	1.11	3.28
g diff. (ppt)	-1.76	0.74	-2.09	-1.01	-1.25

Growth Accounting in Industries with LIQ

Dependent variable is the growth rate of:	L	K	TFP	PROD	Ι
	(1)	(2)	(3)	(4)	(5)
CTOT volatility × LIQ	-5.16 [†]	-14.29**	-3.23	-3.20	-18.77**
	(3.20)	(6.76)	(4.12)	(2.78)	(7.83)
Initial industry share	-0.03	0.14	-0.37***	-0.24***	-0.22
	(0.05)	(0.11)	(0.09)	(0.06)	(0.17)
Obs.	6,117	4,057	4,014	6,117	4,057
\mathbb{R}^2	0.42	0.34	0.43	0.38	0.41
Ave. g (%)	1.70	3.48	0.75	1.11	3.28
g diff. (ppt)	-0.72	-2.00	-0.45	-0.45	-2.63

Conclusion

- One reason for stagnant growth in commodity-rich countries:
 - CTOT volatility↑ ⇒ Cost of capital↑ ⇒ Likelihood of binding credit
 constraints↑ ⇒ Industry growth↓
 - Firms with *EFD* suffer from $g_A \downarrow$ and firms with *LIQ* from $g_K \downarrow$
 - Complement the 'resource curse' through a financial constraint
- Policies promoting industrialization by smoothing CTOT volatility:
 - 0 Financial development and integration
 - 0 International reserves and SWF
 - 0 Macroprudential regulations
 - o Better institutions