What drives variation in corporate hedging: price expectations or risk?

Haibo Jiang (University of Quebec at Montreal) Nishad Kapadia (Tulane University) Yuhang Xing (Rice University) Yifan Zhang (Rice University)

JPMCC International Commodities Symposium, August 15-16, 2022

Introduction

There are two broad sets of theories for why firms use derivatives

1. Risk + Frictions

- Financial distress is costly (Smith and Stulz, 1985)
- Financial constraints disrupt investments in bad times (Froot, Scharfstein, and Stein, 1993)
- Taxes: convexity (Smith and Stulz, 1985) and tax shields due to higher debt capacity (Leland, 1998)
- Assessing true manager performance is hard (DeMarzo and Duffie, 1985)
- Agency problems managers/large shareholders are risk averse (Smith and Stulz, 1985)

There are two broad sets of theories for why firms use derivatives

1. Risk + Frictions

- Financial distress is costly (Smith and Stulz, 1985)
- Financial constraints disrupt investments in bad times (Froot, Scharfstein, and Stein, 1993)
- Taxes: convexity (Smith and Stulz, 1985) and tax shields due to higher debt capacity (Leland, 1998)
- Assessing true manager performance is hard (DeMarzo and Duffie, 1985)
- Agency problems managers/large shareholders are risk averse (Smith and Stulz, 1985)
- 2. To make money based on their expectations of future prices!
 - Make use of private information (Stulz, 1996)
 - Harvest unconditional risk premia (Adam and Fernando, 2006)

Much academic research is devoted to testing risk + frictions theories...

- Many papers test risk + frictions. For e.g.,
 - Dolde (1995), Tufano (1996), Mian (1997), Geczy, Minton, and Schrand (1997), Haushalter (2000), Graham and Rogers (2002), Campello, Lin, Ma, and Zou (2011), Bakke, Mahmudi, Fernando, and Salas (2016), Gilje and Taillard (2017),...

Much academic research is devoted to testing risk + frictions theories...

- Many papers test risk + frictions. For e.g.,
 - Dolde (1995), Tufano (1996), Mian (1997), Geczy, Minton, and Schrand (1997), Haushalter (2000), Graham and Rogers (2002), Campello, Lin, Ma, and Zou (2011), Bakke, Mahmudi, Fernando, and Salas (2016), Gilje and Taillard (2017),...
- Relatively few papers test price expectations
 - Brown, Crabb, and Haushalter (2006) and Adam, Fernando, and Salas (2017)

Much academic research is devoted to testing risk + frictions theories...

- Many papers test risk + frictions. For e.g.,
 - Dolde (1995), Tufano (1996), Mian (1997), Geczy, Minton, and Schrand (1997), Haushalter (2000), Graham and Rogers (2002), Campello, Lin, Ma, and Zou (2011), Bakke, Mahmudi, Fernando, and Salas (2016), Gilje and Taillard (2017),...
- Relatively few papers test price expectations
 - Brown, Crabb, and Haushalter (2006) and Adam, Fernando, and Salas (2017)
- Yet managers themselves emphasize price expectations or increasing cash flows on surveys
 - Bodnar, Hayt, and Marston (1998), Loderer and Pichler (2000), Glaum (2002)

We use an expanded sample of gold mining data to test both sets of theories

• Data on positions of gold miners used by Tufano (1996) (3 years), expanded by Adam and Fernando (10 years)

Average Hedge Ratio and Percentage of Hedging Firms

We use an expanded sample of gold mining data to test both sets of theories

- Data on positions of gold miners used by Tufano (1996) (3 years), expanded by Adam and Fernando (10 years)
- We add 10 more years of data...

Something important must have changed for firms to change their behavior so dramatically. What?

- We test a simple price expectations based hypothesis:
 - Managers / investors believe gold prices are predictable and change hedge ratios based on their expectations of future gold prices
 - Expectations are based on extrapolating past gold returns. Firms reduce their hedging when gold prices have recently increased
 - But this is a bias: ex-post, extrapolation does not make them money

Something important must have changed for firms to change their behavior so dramatically. What?

- We test a simple price expectations based hypothesis:
 - Managers / investors believe gold prices are predictable and change hedge ratios based on their expectations of future gold prices
 - Expectations are based on extrapolating past gold returns. Firms reduce their hedging when gold prices have recently increased
 - But this is a bias: ex-post, extrapolation does not make them money
- We also test 'Risk + Frictions' hypotheses
 - E.g. Increase in gold prices imply firms are less distressed and need less hedging

• Firms themselves say this in their 10-Ks!

- Firms themselves say this in their 10-Ks!
- Past gold returns explain 45% of the time-series variation in hedge ratios and 63% of the fraction of firms that hedge

- Firms themselves say this in their 10-Ks!
- Past gold returns explain 45% of the time-series variation in hedge ratios and 63% of the fraction of firms that hedge
- Gold price forecasts by analysts predict firm hedge ratios

- Firms themselves say this in their 10-Ks!
- Past gold returns explain 45% of the time-series variation in hedge ratios and 63% of the fraction of firms that hedge
- Gold price forecasts by analysts predict firm hedge ratios
- Gold returns predict forecast errors

- Firms themselves say this in their 10-Ks!
- Past gold returns explain 45% of the time-series variation in hedge ratios and 63% of the fraction of firms that hedge
- Gold price forecasts by analysts predict firm hedge ratios
- Gold returns predict forecast errors
- Managers cannot successfully predict gold returns
 - Hedge ratios do not predict returns
 - Unconditional premium is zero
 - Hedging loses money over the full sample

- Firms themselves say this in their 10-Ks!
- Past gold returns explain 45% of the time-series variation in hedge ratios and 63% of the fraction of firms that hedge
- Gold price forecasts by analysts predict firm hedge ratios
- Gold returns predict forecast errors
- Managers cannot successfully predict gold returns
 - Hedge ratios do not predict returns
 - Unconditional premium is zero
 - Hedging loses money over the full sample
- \cdot Investors punish managers that make hedging losses

- Firms themselves say this in their 10-Ks!
- Past gold returns explain 45% of the time-series variation in hedge ratios and 63% of the fraction of firms that hedge
- Gold price forecasts by analysts predict firm hedge ratios
- Gold returns predict forecast errors
- Managers cannot successfully predict gold returns
 - Hedge ratios do not predict returns
 - Unconditional premium is zero
 - Hedging loses money over the full sample
- Investors punish managers that make hedging losses

... and little evidence that risk frictions stories can explain the decline

Data

Gold hedge survey of the North America gold producers: 1991Q1
 – 1999Q4 and 2002Q2 – 2011Q1, hard copies provided by Ted
 Reeve

- Gold hedge survey of the North America gold producers: 1991Q1

 1999Q4 and 2002Q2 2011Q1, hard copies provided by Ted
 Reeve
- Gold reserves data: hand collected from annual reports + historical data (1991-1998) shared by Prof. Georges Dionne

- Gold hedge survey of the North America gold producers: 1991Q1

 1999Q4 and 2002Q2 2011Q1, hard copies provided by Ted
 Reeve
- Gold reserves data: hand collected from annual reports + historical data (1991-1998) shared by Prof. Georges Dionne
- Annual Precious Metals Forecast Surveys: LBMA (1997, 1998, 2000, 2001, 2003 2016)

- Gold hedge survey of the North America gold producers: 1991Q1

 1999Q4 and 2002Q2 2011Q1, hard copies provided by Ted
 Reeve
- Gold reserves data: hand collected from annual reports + historical data (1991-1998) shared by Prof. Georges Dionne
- Annual Precious Metals Forecast Surveys: LBMA (1997, 1998, 2000, 2001, 2003 2016)
- Dataset on forced CEO turnover: 1993 2018 (Peters and Wagner (2014) and Jenter and Kanaan (2015))

- Gold hedge survey of the North America gold producers: 1991Q1

 1999Q4 and 2002Q2 2011Q1, hard copies provided by Ted
 Reeve
- Gold reserves data: hand collected from annual reports + historical data (1991-1998) shared by Prof. Georges Dionne
- Annual Precious Metals Forecast Surveys: LBMA (1997, 1998, 2000, 2001, 2003 2016)
- Dataset on forced CEO turnover: 1993 2018 (Peters and Wagner (2014) and Jenter and Kanaan (2015))
- Gold spot and futures prices: Datastream
- Other databases: Compustat, CRSP, CFMRC, Gold lease rates and the LIBOR-US rates

Hedge ratio

Americas		2004		2005		2006
Q4 2003	Ounces	Price/oz.	Ounces	Price/oz.	Ounces	Price/oz.
Inmet Mining						
Forward sales	128,300	333	108,300	342	103,400	356
Forward sales	10,350	366	13,500	367	13,500	369
Calls - sold	16,200	461	· · · · ·	-	- 1	-
Total Committed	154,850	-	121,800		116,900	-
Puts - bought	16,200	375	-	-		-

Hedge ratio

Americas		2004		2005		2006
Q4 2003	Ounces	Price/oz.	Ounces	Price/oz.	Ounces	Price/oz.
Inmet Mining						
Forward sales	128,300	333	108,300	342	103,400	356
Forward sales	10,350	366	13,500	367	13,500	369
Calls - sold	16,200	461	· -	-	- · · ·	-
Total Committed	154,850	-	121,800	-	116,900	
Puts - bought	16,200	375	-	-	-	-

• The total net delta-adjusted ounces for each gold miner for the next three years of its hedging positions: including short and long positions in various types of forwards and options (Tufano (1996), Adam and Fernando (2006))

Hedge ratio

Americas		2004		2005		2006	
Q4 2003	Ounces	Price/oz.	Ounces	Price/oz.	Ounces	Price/oz.	
Inmet Mining							
Forward sales	128,300	333	108,300	342	103,400	356	
Forward sales	10,350	366	13,500	367	13,500	369	
Calls - sold	16,200	461		-	-	-	
Total Committed	154,850		121,800	-	116,900		
Puts - bought	16,200	375	-	-	-	-	

- The total net delta-adjusted ounces for each gold miner for the next three years of its hedging positions: including short and long positions in various types of forwards and options (Tufano (1996), Adam and Fernando (2006))
- The hedge ratio for firm *i* in quarter *t* is calculated using:

```
Hedge ratio<sub>i,t</sub> = -\frac{\text{Total net delta-adjusted ounces}_{i,t}}{\text{Reserves}_{i,t}},
```

Key results

Managers in 10-Ks emphasize price trends in explaining why they de-hedged in the period of 2002–2004

Management Discussion: No hedging and De-hedging

Consistent with this justification, hedge ratios fell as gold prices rose

Consistent with this justification, hedge ratios fell as gold prices rose

Past gold returns are the single best predictor hedge ratios and % of firms that hedge

	Ave	rage hedge	ratio	Percent of hedging firms			
	(1)	(2)	(3)	(4)	(5)	(6)	
Short-term gold return	-0.053		0.046	-1.192***		-0.276	
Long-term gold return	(0.050)	-0.048***	-0.051*** (0.007)	(0.401)	-0.482***	-0.466*** (0.0/7)	
Constant	0.042***	(0.008) 0.042*** (0.003)	(0.007) 0.051*** (0.003)	0.051***	(0.044) 0.570*** (0.018)	(0.047) 0.653*** (0.018)	
Observations	73	73	73	73	73	73	
R ² Adjusted R ²	0.016 0.002	0.450 0.442	0.461 0.445	0.111 0.098	0.624 0.619	0.629 0.619	

	Dependent variable:							
	A	verage Rati	0	Percen	t of Hedgin	g Firms		
	(1)	(2)	(3)	(4)	(5)	(6)		
Short-term gold return	0.045		0.036	-0.285		-0.921**		
	(0.039)		(0.092)	(0.276)		(0.339)		
Long-term gold return	-0.051***		-0.064***	-0.465***		-0.615***		
	(0.007)		(0.017)	(0.047)		(0.061)		
Forecasted 1-year gold return		-0.687*	-0.564**		-4.217	-2.924***		
		(0.348)	(0.222)		(2.661)	(0.814)		
Constant	0.051***	0.061***	0.077***	0.655***	0.591***	0.805***		
	(0.003)	(0.013)	(0.011)	(0.018)	(0.099)	(0.040)		
Observations	73	12	12	73	12	12		
R ²	0.461	0.281	0.772	0.630	0.201	0.942		
Adjusted R ²	0.446	0.209	0.687	0.619	0.121	0.920		

Forecast errors (realized - forecasted) of these forecasts are correlated with past returns, consistent with an extrapolation bias

	(1)	(2)	(2)	(1)	(г)
	(1)	(2)	(3)	(4)	(5)
Short-term gold return	-0.861***	-0.860***	-0.884***	-0.901***	-0.896***
0	(0.084)	(0.097)	(0.080)	(0.083)	(0.090)
Long-term gold return	(· · · · · /	-0.003	(,	(,	(,
Long term gota retarm		(0.059)			
Risk-free rate		(0.007)	0.931	0.960	0.892
			(0.762)	(0.773)	(0.856)
CDD mouth			(0.702)	(0.773)	(0.030)
GDP growth			0.003	0.008	0.010
			(0.010)	(0.011)	(0.014)
Inflation			-0.012	-0.027	-0.025
			(0.017)	(0.025)	(0.027)
SP500 return				-0.090	-0.074
				(0.106)	(0.129)
VIX				(,	0.001
					(0.004)
Constant	-0.020**	-0.027*	-0.020	-0.016	-0.047
Constant	-0.038	-0.037	-0.039	-0.010	-0.047
	(0.015)	(0.018)	(0.038)	(0.048)	(0.136)
Observations	18	18	16	16	16
R ²	0.867	0.867	0.931	0.936	0.936
Adjusted R ²	0.859	0.849	0.906	0.903	0.893
Observations R ² Adjusted R ²	18 0.867 0.859	18 0.867 0.849	16 0.931 0.906	16 0.936 0.903	16 0.936 0.893

Adama and Fernando (2006) find that gold miners can generate cash flows by harvesting unconditional risk premia

- They find that $[F_{t,T} > E(S_T)]$
- That is, gold hedgers obtain higher prices on average by selling forward rather than holding gold to maturity and selling spot
- \cdot And thus hedging generates positive unconditional cash flows

Realized Risk Premium = $[1 + (F(t,T) - S(T))/F(t,T)]^{(1/(T-t))} - 1$

Is there an unconditional risk premium?

Is there an unconditional risk premium?

A conditional version of Adam and Fernando?

- Managers hedged when the expected premium was positive and stopped hedging when they realized it was zero
- If so, hedgers would make money...
- EVS: Economic Value Added of hedge positions, i.e., mark-to-market values of hedge positions

Do shareholders behave in a manner consistent with a belief that managers can predict commodity prices?

- Bertrand and Mullainathan (2001) find that managers are rewarded for good luck (their pay increases when oil prices go up)
- Might make sense in a world in which managers can chose whether to hedge and investors believe that prices are predictable
- If so managers should also be punished for bad luck!

Do shareholders behave in a manner consistent with a belief that managers can predict commodity prices?

		CEO Forced Turnover within One Year							
			OLS			Logit			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
Hedging loss	0.002**	0.002**	0.002**	0.007*	0.007*	0.403**	0.298*		
	(0.001)	(0.001)	(0.001)	(0.004)	(0.004)	(0.167)	(0.181)		
Total asset				-0.002*	-0.001		-0.142***		
				(0.001)	(0.001)		(0.049)		
ROA				-0.014	-0.018		0.466		
				(0.013)	(0.014)		(0.520)		
Past return				-0.00001*	-0.00000		-0.037***		
				(0.00000)	(0.00000)		(0.009)		
Past volatility				0.00001***	-0.00000		0.025***		
				(0.00000)	(0.00000)		(0.006)		
Tobin's Q				-0.0003**	-0.0002*		-0.013		
				(0.0001)	(0.0001)		(0.009)		
Total compensation				-0.001	-0.001		0.013		
				(0.002)	(0.002)		(0.087)		
Age > 60				-0.008***	-0.007***		-0.507***		
-				(0.002)	(0.002)		(0.177)		
Tenure				-0.0005***	-0.0005***		-0.035***		
				(0.0002)	(0.0001)		(0.011)		
Constant	0.005***					-5.388***	-2.606***		
	(0.0003)					(0.064)	(0.586)		
Fixed Effects	No	Industry	Industry, year	Industry	Industry, year	-	-		
Observations	60,673	60,673	60,673	12,949	12,949	60,673	12,949		
R ²	0.0001	0.003	0.005	0.010	0.016				
Adjusted R ²	0.0001	0.002	0.004	0.006	0.012				

Relatively little evidence for Risk + Frictions in explaining the decline

Unconditional mean hedge ratios: 1991Q1-1999Q4: 0.0498 2002Q2-2011Q2: 0.0287 Difference: -0.0211

Does controlling for similar z scores, and other characteristics make the difference 0?

Differences in hedge ratios between treated and control firms Method 1: 1 variable (Z-score) Method 2: 3 variables (Total assets, Book leverage, Profitability) Method 3: 8 variables (+ Investment, Dividend, Tax loss carried forward, Quick ratio)

Method	Difference	Robust S.E.	Z	p-value
Method 1	-0.020	0.003	-7.54	0.000
Method 2	-0.027	0.003	-10.60	0.000
Method 3	-0.023	0.006	-3.91	0.000

But some evidence for distress in the cross section

		Hedge ratio							
	(1)	(2)	(3)	(4)	(5)	(6)			
Selection Stage									
Short-term gold return	-2.170*** (0.610)	-2.238*** (0.611)			-2.208*** (0.636)	-2.004*** (0.644)			
Long-term gold return	-1.835*** (0.127)	-1.746*** (0.138)			-1.803*** (0.144)	-1.523*** (0.167)			
Gold volatility		-0.891 (0.547)			-0.229 (0.571)	-0.172 (0.578)			
Z-score			0.130*** (0.025)		0.122*** (0.028)	0.148*** (0.036)			
Total assets				-0.380*** (0.045)		-0.119** (0.059)			
Profitability				0.549*** (0.108)		0.089 (0.138)			
Book Leverage				2.330*** (0.293)		1.282*** (0.325)			
N	2,627	2,627	2,478	2,478	2,419	2,419			
L1	2,308.513	2,309.884	2,015.543	2,122.210	2,130.065	2,167.890			
LO	1,191.721	1,191.721	1,167.734	1,167.734	1,145.114	1,145.114			

But some evidence for distress in the cross section

		Hedge ratio							
	(1)	(2)	(3)	(4)	(5)	(6)			
Second Stage									
Short-term gold return	-1.454 (1.022)	-1.442 (1.023)			-1.343 (1.032)	-1.002 (1.013)			
Long-term gold return	-1.623*** (0.233)	-1.603*** (0.244)			-1.458*** (0.252)	-0.557** (0.281)			
Gold volatility		-0.277 (1.001)			-1.341 (1.025)	-0.140 (1.027)			
Z-score			- <mark>0.155</mark> ** (0.062)		-0.128** (0.063)	<mark>-0.006</mark> (0.074)			
Total assets				-0.635*** (0.086)		-0.543*** (0.104)			
Profitability				-0.060 (0.201)		0.041 (0.242)			
Book Leverage				3.858*** (0.534)		3.581*** (0.571)			

- Dramatic decline in gold hedging over the 2002-2011 period
- Evidence consistent with a managers extrapolating past gold prices to expect higher prices in the future and hence reducing hedges
- Little to no evidence consistent with risk + frictions explaining the decline in hedging