A tale of two premiums revisited

Loïc Maréchal

August 16, 2022

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

> armasuisse Science and Technology Cyber-Defence Campus

11 .1 UNIL Université de Lausanne

Loïc Maréchal

A tale of two premiums revisited

■ ► ▲ **■** ► **■** ∞ < ⊂ August 16, 2022 1/16

(日) (四) (日) (日) (日)

- Revisit the study of Kang, Rouwenhorst, and Tang (2020) (KRT) in the light of:
 - Optimal risk adjustment
 - Effects of the financialization
 - Commodity risk factors vs. characteristics debate

A (10) < A (10) < A (10)</p>

Context: KRT and financialization

- Financialization effects detected during the roll of commodity index funds:
 - Long only, passive funds must roll their positions from the expiring futures to the next
 - Roll date and position sizes are public, *i.e.*, there is no information revealed during the roll
 - Sunshine trading applies (Bessembinder, Carrion, Tuttle, and Venkataram, 2016, Dubois and Maréchal, 2021), abnormal returns do not survive transaction costs
- Two characteristics relate trader's positions to the cross-section of commodity futures returns (KRT):
 - "Average" hedging pressure (AHP), *i.e.*, hedging pressure computed with a 52 weeks rolling backward window, proxy for insurance demand
 - Net trading (Q) *i.e.*, the change in commercial net position over a week, proxy for liquidity demand

Context: risk factors for commodity futures?

- Are commodity futures exposed to systematic risk factors?
 - No, according to Black (1976)
 - Empirical studies:
 - no exposure to traditional systematic risk factors (Dusak, 1973, Bodie and Rosansky, 1980, Daskalaki, Kostakis, and Skiadopoulos, 2014)
 - mean reverting process; Schwartz (1997). Thus, they do not have a systematic market risk exposure
 - however there are (ad-hoc) factors derived from contract characteristics that captures fundamentals, liquidity, or insurance premia in the cross-section: Basis, Momentum, Basis-Momentum, Hedging Pressure (insurance), Net Trading (liquidity), crowding, β on average commodity portfolio and OI growth rate.
 - Factors or characteristics?
 - No consensus

< □ > < □ > < □ > < □ > < □ > < □ >

Objectives

Replicate KRT:

- optimal risk adjustment
- extend the period and check the robustness
- Control for the effects of the financialization:
 - roll weeks limit the study to weeks that have a three-day overlap with the roll or more
 - measure of CIT pressure
 - pre- and post-financialization

• Overcome FMB limitations with a panel approach

Main results

- Optimal risk adjustment: four factors identified B-M-BM-CR
- Impact of the days of the roll on returns, turnover, and factors: only turnover is significantly affected
- KRT results are robust to risk adjustment, financialization period, roll days, and measure of CIT pressure with FMB regressions
- Results in panel are different:
 - Characteristics favoured
 - Reduction of the insurance price in the post-financialization period (liquidity price unch.)

・ 何 ト ・ ヨ ト ・ ヨ ト

- Daily prices of 26 commodity futures contracts, nearby $(F_{c,t}^1)$ and first deferred $(F_{c,t}^2)$, downloaded from Datastream (1994–2021), that are indexed by SP-GSCI and BCOM (almost perfect roll overlap)
- Weekly (Tuesday) CFTC data: COT (from 1994) and DCOT (from 2006) for positions of long and short traders of all categories, and total open interest (1994–2021)
- CIT pressure: Masters (2008) procedure

< □ > < □ > < □ > < □ > < □ > < □ >

Factors (1)

• Arithmetic weekly returns from Tuesday to Tuesday rolled onto the deferred contract one week before maturity: $R_{c,t} = \frac{F_{c,t}}{F_{c,t-1}} - 1$

• Net trading:
$$Q_{c,t} = \frac{(CL_{c,t}-CS_{c,t}) - (CL_{c,t-1}-CS_{c,t-1})}{Ol_{c,t-1}}$$

• Average hedging pressure:
$$AHP_{c,t} = \frac{\frac{1}{52}\sum_{j=0}^{51} (CS_{c,t-j} - CL_{c,t-j})}{OI_{c,t}}$$

• Basis:
$$B_{c,t} = \frac{\ln F_{c,t}^2 - \ln F_{c,t}^1}{T_2 - T_1}$$

• Momentum:
$$M_{c,t} = \prod_{j=0}^{51} \left(1 + R_{c,t-j}^1 \right)$$

(日) (四) (日) (日) (日)

Factors (2)

• Basis-Momentum:
$$BM_{c,t} = \prod_{j=0}^{51} \left(1 + R_{c,t-j}^1 \right) - \prod_{j=0}^{51} \left(1 + R_{c,t-j}^2 \right)$$

• Average factor beta:
$$\beta_{c,t} = \frac{Cov\left(R_{c,t|t-52}^1, AVG_{t|t-52}\right)}{Var\left(AVG_{t|t-52}\right)}$$

• Crowding:
$$CR_{c,t} = \frac{NCL_{c,t} - NCS_{c,t}}{OI_{c,t}} - \frac{1}{52} \sum_{j=0}^{51} \frac{NCL_{c,t-j} - NCS_{c,t-j}}{OI_{c,t-j}}$$

• Open interest growth rate
$$\Delta OI_{c,t} = \prod_{j=0}^{51} \left(\frac{OI_{c,t-j}^{USD}}{OI_{c,t-j-1}^{USD}} \right)^{1/52} - 1$$

イロト イ部ト イヨト イヨト 二日

Methodology

- Optimal risk adjustment with factor selections based on the Bayesian procedure of Barillas and Shanken (2018)
- Individual regressions on overlapping roll dummies of:
 - returns on futures contract
 - turnover
 - factors
- FMB predictive regressions of returns on insurance and liquidity variables and setting adjusting for the financialization (days of the roll, sub-periods, index traders' pressure
- Factors *vs.* characteristics with the "Generalized Portfolio Sort" approach of Hoechle, Schmid, and Zimmermann (2020)

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Optimal risk adjustment

$$ML_z = |X'X|^{N-2}|S_z|^{-\frac{T-K}{2}} \times H_z$$

# factors	Selected factors	Absolute test					
		Avg. $ \alpha $ %	W	GRS	P-value GRS	BF	Prob.
1	В	0.10	63.96	2.01	0.00	0.05	0.04
2	B-CR	0.10	50.05	1.63	0.02	0.13	0.12
3	B-BM-CR	0.09	43.79	1.47	0.05	0.36	0.26
4	B-M-BM-CR	0.09	40.67	1.41	0.07	0.56	0.36
5	B-M-BM-∆OI-CR	0.09	39.98	1.44	0.07	0.50	0.33
6	β -B-M-BM- Δ OI-CR	0.09	39.97	1.50	0.05	0.38	0.27

August 16, 2022 11 / 16

3

イロト イヨト イヨト イヨト

Revisiting the results

 $R_{c,t}^{1} = \beta_{0,t} + \beta_{1,t} A H P_{c,t-1} + \beta_{2,t} Q_{c,t-1} + \beta_{3,t} C I T_{c,t-1} + ^{\mathbf{T}} \mathbf{b}_{t} \mathbf{RISK}_{c,t-1} + \epsilon_{c,t}$

	KRT	Opt. risk	3+	CIT	Pre	Post	1994-2020
$AHP_{c,t-1}$	0.43	0.34	0.55	0.38	0.25	0.43	0.41
	(2.67)	(1.93)	(1.98)	(2.04)	(0.92)	(1.84)	(2.33)
$Q_{c,t-1}$	4.66	3.80	2.32	3.70	2.63	4.82	3.20
	(5.97)	(4.91)	(1.88)	(4.63)	(3.10)	(3.91)	(2.49)
$CIT_{c,t-1}$				-0.25			
				(-0.29)			
Avg. Adj. <i>R</i> ² (%)	11.95	13.73	12.81	13.88	13.65	13.78	14.44

August 16, 2022 12 / 16

- 34

(日) (四) (日) (日) (日)

Risk factors or characteristics?

$$R_{c,t}^{1} = \mu_{c} + {}^{\mathbf{T}} \big({}^{\mathbf{T}} \mathsf{z}_{c,t} \odot {}^{\mathbf{T}} \mathsf{x}_{t} \big) \Theta + \epsilon_{c,t}$$

	1994-	-2017	Pre		P	ost
	(1)	(2)	(3)	(4)	(5)	(6)
$AHP_{c,t-1}$	0.33	0.33	0.48	0.50	0.25	-0.37
	(2.28)	(2.24)	(2.26)	(2.36)	(1.34)	(-0.76)
$Q_{c,t-1}$	2.78	2.80	2.52	2.69	3.19	4.79
	(5.73)	(5.75)	(4.83)	(4.98)	(3.26)	(3.31)
$CIT_{c,t-1}$	-0.26	-0.18	2.93	1.55	-0.69	-0.86
	(-0.19)	(-0.14)	(0.71)	(0.41)	(-0.48)	(-0.50)
Bt		0.56		2.69		-2.31
		(0.30)		(1.35)		(-0.69)
Mt		2.30		0.39		-1.52
		(1.28)		(0.18)		(-0.51)
BMt		-1.95		-0.51		-3.97
		(-0.96)		(-0.28)		(-1.23)
CRt		-1.37		-0.79		0.65
		(-0.80)		(-0.29)		(0.21)
Constant	0.01	0.01	-0.02	-0.03	0.02	-0.55
	(0.18)	(0.19)	(-0.37)	(-0.38)	(0.31)	(-2.01)
FE						\checkmark
Haussman	1.28	15.70	2.87	13.93	6.00	25.16**
Adj. R ² (%)	0.15	0.17	0.21	0.36	0.11	0.33

August 16, 2022

- 2

・ロト ・四ト ・ヨト ・ヨト

13/16

Conclusion

- Optimal risk adjustment: four factors identified B-M-BM-CR
- Impact of the days of the roll on returns, turnover, and factors: only turnover is significantly affected
- Kang et al. (2020) results are robust to risk adjustment, financialization period, roll days, and measure of CIT pressure
- When using the panel approach, the post-financialization period seem to benefit hedgers, leaving them the liquidity premium and decreasing their insurance premium
- Extension of the paper towards a more characteristics *vs.* risk factors approach

(4) (日本)

loic.marechal@unil.ch

Loïc		

< ⊒ >

э