Probability Weighing and Commodity Futures Returns Contact

2021 JPMCC Poster

Qi Xu¹; Ying Wang²; ¹Zhejiang University, ²Zhejiang University

Qi XU Zhejiang University, China Email: qixu@zju.edu.cn

Summary

Central Research Question:

• Does probability weighting affect the cross-section of commodity futures returns?

■ Motivations:

- Understanding how speculative trading affects commodity futures prices is a long-lasting question in the area of commodity futures research.
- Existing studies mainly rely on trader position information from Commodity Futures Trading Commission (CFTC) to investigate speculative trading in commodity markets.
- However, empirical evidence regarding whether specific investor behavioral bias, which underpins speculative trading, may affect commodity returns remains lacking in the literature.

Alphas and Factor Loadings

	Panel B: Alphas and Factor Loadings							
Model	(1)	(2)	(3)	(4)				
_	0.16***	0.16***	0.15***	0.12***				
α	(3.82)	(3.80)	(3.88)	(3.13)				
EWE	-0.13	-0.13	-0.10	-0.10				
EWF	(-1.42)	(-1.40)	(-1.09)	(-1.53)				
TCE	-0.08	-0.08	-0.14**	-0.11				
151	(-1.02)	(-1.15)	(-2.10)	(-1.54)				
MOME	-0.34***	-0.33***	-0.35***	-0.29***				
MONF	(-4.30)	(-4.11)	(-4.57)	(-3.74)				
LIDE		-0.05	-0.02	0.08				
HPF		(-0.77)	(-0.31)	(0.86)				
PDE			-0.01	-0.09				
KBr			(-0.13)	(-1.62)				
DME			0.14**	0.11				
DIVIF			(2.02)	(1.19)				
SVEWE				0.00				
SKEWF				(0.02)				
\^ OIE				-0.10				
				(-1.30)				
LIOF				0.02				
LIQF				(0.27)				
VALE				0.30***				
VALF				(3.30)				
CVE				0.00				
CVF				(-0.04)				
Adjusted R-		0.14						

- Main Empirical Findings
- High probability weighting value commodities significantly *underperform* low probability weighting value commodities.
- The predictive power cannot be explained by risk factors or other commodity characteristics.
- Beta sorting and alternative risk factors do not support a risk-based explanation.
- Limits to arbitrage contributes to the predictability.
- Comprehensive robustness checks support our main findings.

Contributions

- We introduce a new commodity return predictor motivated by a behavioral theory.
- We provide new empirical evidence in commodity futures markets.
- We first formally study on probability weighting on commodity market and show that results are robust after controlling for skewness.

Data and Variables

Data:

- Commodity Futures Data: daily settlement price, trading volume, and open interest on 26 active traded US commodity futures contracts from Bloomberg from February 1982 to October 2019
- 13 agricultural futures, 4 livestock futures, 5 metal futures, 4 energy futures
- Log return of futures prices, assuming a fully-collateralized position in futures markets

Multivariate Regression Analysis

Understanding the Predictability

Risk-Based Explanations

• Beta Sorted Portfolios

	P1	P2	P3	P4	P 5	P1-P5
Avg Return	-0.0126	-0.0064	-0.0086	-0.0305	-0.0425	0.0299
	(-0.37)	(-0.20)	(-0.25)	(-0.88)	(-1.16)	(0.67)
Std	0.17	0.17	0.18	0.17	0.19	0.20
Sharpe Ratio	-0.07	-0.04	-0.05	-0.18	-0.22	0.15
Skewness	-0.48	0.22	-0.67	-0.38	-0.22	-0.19

• Alternative Risk Factors

	<i>b</i> 1	<i>b</i> 2	λ1	λ2	R-Squared	RMSE	χ^2
$EWF+ \triangle VOL_M$	-28.13* (-1.67)	0.06 (0.39)	-0.03 (-1.59)	5.30 (0.37)	0.74	0.16	0.63 [0.89]
$EWF+ \triangle LIQ_M$	-20.29 (-1.11)	0.05 (0.51)	-0.02 (-1.22)	2.63 (0.57)	0.82	0.13	0.73 [0.87]

Variables

- A vector of historical commodity return with equal probability, sort from negative to positive $\begin{pmatrix} r_{-m}, \frac{1}{K}; r_{-m+1}, \frac{1}{K}; ...; r_{-1}, \frac{1}{K}; r_{1}, \frac{1}{K}; ..., r_{n-1}, \frac{1}{K}; r_{n}, \frac{1}{K} \end{pmatrix}$
- (Cumulative) prospect theory value by Tverkey and Kahneman (1992)

 $TK \equiv \sum_{j=-m}^{-1} v(r_j) \left[w^- \left(\frac{j+m+1}{K}\right) - w^- \left(\frac{j+m}{K}\right) \right] + \sum_{j=1}^n v(r_j) \left[w^+ \left(\frac{n-j+1}{K}\right) - w^+ \left(\frac{n-j}{K}\right) \right]$

• Probability weighting function and Value function

$$\pi_i = \begin{cases} w^+(p_i + \dots + p_n) - w^+(p_{i+1} + \dots + p_n), 0 \le i \le n \\ w^-(p_{-m} + \dots + p_i) - w^-(p_{-m} + \dots + p_{i-1}), -m \le i \le 0 \\ w^+(P) = \frac{P^{\gamma}}{(P^{\gamma} + (1-P)^{\gamma})^{1/\gamma}}, w^-(P) = \frac{P^{\delta}}{(P^{\delta} + (1-P)^{\delta})^{1/\delta}} \end{cases} \quad v(r) = \begin{cases} r^{\alpha} & r \ge 0 \\ -\lambda(-r)^{\alpha} & r < 0 \end{cases}$$

- Parameters $(\alpha, \lambda, \gamma, \delta)$ are (1, 1, 0.61, 0.69) for the probability weighting component (PW), follow the literature
- Use the past five year rolling window of monthly commodity return to obtain a monthly commodity-level probability weighting value (pw)

Empirical Results

Univariate Portfolio Sorting

Excess Kurtosis	2.35	2.66	2.41	0.64	1.93	0.55
aximum Drawdown	-0.65	-0.54	-0.51	-0.75	-0.77	-0.67
Avg pw	0.0028	0.0025	0.0024	0.0013	0.0013	0.0015
Avg β_{PWF}	-10.42	-5.31	-2.74	-0.91	1.78	-12.21

Mispricing-Based Explanations

• Limits to Arbitrage

	Commodi	ity-Specific	Measures	Aggregate Market Measures			
	(1)	(2)	(3)	(4)	(5)	(6)	
	illiq	ivol	oi	$\triangle VIX$	$\triangle FSI$	TED	
pw	-0.05**	0.06*	-0.07***	-0.05***	-0.04**	-0.05*	
-	(-2.75)	(1.82)	(-5.10)	(-3.86)	(-2.35)	(-1.65)	
lim	-0.01	-0.02	-0.02	-0.01	-0.03**	-0.02	
	(-0.67)	(-0.49)	(-1.61)	(-0.83)	(-2.23)	(-0.81)	
pw x lim	-0.02	-0.12***	0.02*	-0.02*	-0.03***	-0.01	
	(-0.82)	(-3.10)	(1.73)	(-2.04)	(-3.95)	(-0.35)	
ts	-0.04**	-0.04**	-0.34***	-0.34***	-0.34***	-0.34	
	(-2.12)	(-2.31)	(-20.87)	(-19.42)	(-18.39)	(-19.23)	
mom	0.03	0.05*	0.04*	0.01	0.01	0.01	
	(1.16)	(1.99)	(1.94)	(0.89)	(0.64)	(0.80)	
hhp	-0.01	0.00	0.01	0.00	0.00	0.01	
	(-0.33)	(0.08)	(0.30)	(0.16)	(-0.11)	(0.28)	
shp	0.03	0.01	0.01	0.02	0.03	0.01	
	(1.44)	(0.57)	(0.61)	(0.81)	(1.05)	(0.57)	
val	0.01	0.01	0.02	0.01	0.02	0.01	
	(0.49)	(0.34)	(0.82)	(0.53)	(0.76)	(0.55)	
CV	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	
	(-1.66)	(-0.98)	(-1.43)	(-1.13)	(-1.16)	(-1.04)	
skew	-0.06***	-0.06***	-0.05	-0.07***	-0.07***	-0.06***	
	(-2.83)	(-3.20)	(-2.88)	(-3.62)	(-3.52)	(-3.7)	
liq		-0.02***	-0.02***	-0.02***	-0.01***	-0.02***	
		(-7.37)	(-6.08)	(-10.7)	(-9.46)	(-10.09)	
oi	0.01	0.00		-0.01	-0.01	-0.01	
	(1.56)	(0.20)		(-0.38)	(-0.49)	(-0.46)	
bm	0.01	0.00	0.01	0.01	0.01	0.01	
	(0.42)	(-0.03)	(0.26)	(0.36)	(0.31)	(0.42)	
rb	0.04	0.06***	0.03	0.01	0.02	0.01	
	(1.61)	(3.37)	(1.07)	(0.44)	(0.49)	(0.48)	
Observations	6,411	6,992	6,892	6,669	6,262	6,892	
R-squared	0.1936	0.1935	0.2600	0.0986	0.1006	0.0971	
Commodity FE	Yes	Yes	Yes	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	
Cluster by Commodity	Yes	Yes	Yes	Yes	Yes	Yes	

EWF+LEVF	-21.31 (-0.72)	0.01 (0.20)	-0.03 (-0.69)	1.04 (0.12)	0.76	0.15	0.88 [0.83]
EWF+CAPRF	-25.89 (-1.63)	-2.16 (-0.31)	-0.03* (-1.77)	-0.02 (-0.62)	0.74	0.16	0.71 [0.87]
$MKT + MKT^{-}$	-0.14 (-0.68)	0.10 (0.21)	-1.26 (-0.42)	-0.55 (-0.21)	0.02	0.31	5.38 [0.15]

 Heterogenous Trading by Commercial and Non-Commercial Traders

	P1	P2	P3	P4	Р5	P5-P1
PT for Commercials	0.71	0.76	0.81	0.86	0.83	0.12
F1 for Commercials						(1.47)
DT for Non Commenciale	1.48	1.57	1.59	1.81	1.80	0.33***
PI for Non-Commercials						(5.64)
O for Commenciale	0.06	0.06	0.04	0.02	0.05	-0.01
Q for Commercials						(-0.14)
O for Non Commercials	-0.04	-0.04	-0.03	0.00	0.02	0.06***
Q for Non-Commercials						(2.81)

Panel A: Portfolio Performance										
	P1	P 2	P3	P4	P 5	P1-P5				
Avg Return	0.03	0.02	-0.01	-0.02	-0.07*	0.11**				
	(0.98)	(0.66)	(-0.19)	(-0.53)	(-1.87)	(2.33)				
Std	0.20	0.16	0.18	0.18	0.20	0.23				
Sharpe Ratio	0.18	0.13	-0.04	-0.10	-0.37	0.47				
Skewness	0.64	0.01	1.05	-0.52	-0.61	0.46				
Excess Kurtosis	4.51	1.53	8.95	3.63	3.59	1.50				
Maximum Drawdown	-0.54	-0.52	-0.74	-0.75	-0.95	-0.68				

Cumulative Returns of Commodity Portfolios Sorted by Probability Weighting Values and Different Commodity Factor Portfolios

Robustness

- Results are robust to alternative estimation windows to obtain commodity probability weighting values.
- Using different conjunction methods do not affect our findings.
- Results hold in general in two sub-samples, but are stronger in the post-financialization periods.
- Results remain when Fama-Macbeth regressions are used.

Selected References

- Barberis, N., Mukherjee, A. & Wang, B. (2016), 'Prospect Theory and Stock Returns: An Empirical Test', Review of Financial Studies 29(11), 3068– 3107.
- Fernandez-Perez, A., Frijns, B., Fuertes, A. M., and Miffre, J. (2018). The skewness of commodity futures return. Journal of Banking & Finance, 86, 143-158.
- 3. Kang, W., Rouwenhorst, K. G., and Tang, K. (2020). A tale of two premiums: The role of hedgers and speculators in commodity futures markets. The Journal of Finance, 75(1), 377-417.
- Tversky, A. and Kahneman, D. (1992) Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297-323.